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The evolution of multidisciplinary design optimization (MDO) over the past several years

has been one of rapid expansion and development. In this paper, the evolution of MDO as

a field is investigated as well as the evolution of its individual linguistic components:

multidisciplinary, design, and optimization. The theory and application of each component

have indeed evolved on their own, but the true net gain for MDO is how these piecewise

evolutions coalesce to form the basis for MDO, present and future. Originating in

structural applications, MDO technology has also branched out into diverse fields and

application arenas. The evolution and diversification of MDO as a discipline is explored

but details are left to the references cited.
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1. CHANGE OF PERSPECTIVE

In the past several years, there has been a shift in the interest and application of the MDO

community from mainly aerospace applications, which stemmed from MDO's origins in

the field of structures, to fields including mechanical, civil, and electrical engineering,

operations research, and materials science. In each of these fields, there are indeed

multidisciplinary research issues in the design, development, production, and support of

complex systems. Recently, the multidisciplinary research and development in each field
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are merging into fundamental approaches to complex system design problems. Also, with

the advent of systems thinking and doing "more with less," issues usually reserved for the

later stages of a design process are brought forward into the initial stages, MDO

technology and research is moving from the detailed analysis design stages to the

conceptual stages where multidisciplinary system tradeoffs can be rapidly explored

effectively and efficiently. This shift parallels a similar shift from traditional calculus

based optimization algorithms, where precise mathematical models and couplings are

known, to more imprecise techniques where laws of uncertainty guide mathematical

models and their interactions. The former certainly has its place in the later stages of

design, but in the early stages, the information about a multidisciplinary, complex system

may not be fully known and many times is unstructured. This gives rise to the requirement

of imprecise techniques for decomposing, analyzing and synthesizing a system model.

Thus, the study of complex systems moves into a new age of research and technology, one

characterized by both precise and imprecise models, and exact mathematics and fuzzy

heuristics.

One of our aims in this paper is to update Sobieszczanski-Sobieski's papers on the status of

MDO [81, 82]. In this paper, we survey the work in MDO from largely only the United

States. This is mainly because of time and space constraints. Our hope is to present the

current status of the field from the United States research community's perspective as a

status report to build upon globally. In Figure 1, we give an overview of this paper. In

Section 2, we begin by identifying the trends in MDO by evaluating the distinct areas of

research in MDO, namely its three linguistic components, multidisciplinary, design, and

optimization. In Section 3, the research and application issues under the umbrellas of each

research area are surveyed and summarized. As shown in Figure 1, these issues overlap

beneath the research areas, as they are motivated by questions from more than one area.

This is part of the difficulties researchers in MDO face, as the integration of various fields

and disciplines poses complex problems. In Section 4, we close with hypotheses on the

future areas of focus in MDO. The work presented here includes government, industry and

academia contributions to this emerging area of research and practical application.

2. MDO: AN INTERNAL DECOMPOSITION

System decomposition is a valuable and many times necessary approach in solving

complex systems. The method used to decompose a system, however, is another issue,

addressed in Section 3. Capitalizing on the advantages of decomposition, the field of

MDO is investigated in this paper by applying a linguistic decomposition approach to the
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term "MDO". This stems from the simple approach used to determine the meaning of

"complicated" compound words such as schoolbus, where combining the meanings of the

root words "school" and "bus" result in the connotation of the compound word.

Decomposing "MDO", the root words "multidisciplinary", "design", and "optimization" are

discovered. Each area calls on certain capabilities from the others to perform its required

duties. These calls and demands among the areas are illustrated in Figure 2. Each of these

terms and the demands each makes on MDO as a whole is investigated in this section.

I_ultidisci

17 Decomposition Q Multiobjectives

17 Information Storage QHuman Factor

17Approximation Q Heuristics

Q Robust Algorithms

Q Mixed Systems

Figure 1. Overview of Paper
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2.1 Multidisciplinary

The term "multidisciplinary" plays an important role in the complexity of system

problems. Individual disciplines have developed mature methods to analyze disciplinary

problems. However, when two or more disciplines and their analyses are combined, such

as Computational Fluid Dynamics (CFD) in aerodynamics and Finite Element

Methodology (FEM) in structures, the problem becomes many times too computationally

expensive. Therefore, some sort of decomposition method is necessary for most

multidisciplinary problems to establish less complex, disciplinary-level problems. Many

decomposed problems are still too complex to effectively analyze because of the size of the

analysis routines. Consequently, a form of approximation may be necessary to replace the

exact analysis. But, how approximate a model can be and still maintain acceptable

accuracy is another research issue in complex systems design. The key notion here is that

each discipline plays an important role in the function of the entire system.

In a given discipline, there may exist system variables which are continuous, integer,

discrete, or Boolean. Examples of these are wing span, number of engines, gear diameter,

or control variables, respectively. Integer, discrete, and Boolean variables will be referred

to as discrete variables in the remainder of this paper. There are well established methods

for solving either purely continuous problems, or purely discrete problems. Continuous

methods are largely calculus based, while discrete methods range from integer

programming methods to heuristic search methods. Yet, it is the development of robust

methods to support the decision making of designers in problems with mixed

continuous/discrete variables that the presence of multiple disciplines demands.

2.2 Design

The term "design" mandates the investigation of other issues, including multiobjective

system formulations. Practical systems are not single objective in nature. In vessel design,

minimizing resistance is similar to minimizing weight in aerospace design, but there are

many other design objectives a designer may want to consider. A naval designer may want

to minimize the vessel powering and keep seakeeping at acceptable levels for various

seastates. Complex systems are always multiobjective, but these objectives may be of

different priorities, according to system requirements and designers preferences.

Process and human designer issues are also brought in with the term "design". Design

consists of a series of decisions made by a designer or design team along a timeline.
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Designers repeatedly use their ability together with the computer's capability to make

decisions regarding various system and subsystem tradeoffs. Hence, the notion of a

designer interface and human-centered design is inherent in any design process. The sense

of time, past and present, in a process requires some way of storing and retrieving

information to expedite future decisions. Hence, some type of database that links the

information from all disciplines for efficient retrieval throughout a design process is

necessary.

2.3 Optimization

Regardless of decomposition, there is a need for the determination of system variables

based on system constraints, variable bounds, and with respect to system objectives.

Independent of the modeling approach taken or domain of application, optimization

techniques are required to solve decision models and support the decision making abilities

of a designer. Optimization techniques have even be used to synthesize, to coordinate a

number of subsystems into a system level "optimum". In addition, single point global

solutions are often difficult to achieve and unrealistic when information about complex

systems is imprecise or incomplete. Therefore, some researchers are moving towards

identifying "satisficing" or sets of solutions which are "good enough" and can be

developed into better solutions throughout a design process [78]. Problems in MDO

demand optimization techniques for multiobjectives, mixed continuous/integer systems,

designer interfaces, robust global solutions, and post-solution analysis, among others.

Researchers have addressed one or more of these various issues, but there does not

presently exist a single algorithm to encompass all the needs of MDO in a decision-based

environment. This may be a problem too great to handle at present, but certainly is a

research issue. There has been extensive work in single objective optimization, but since

the term "multidisciplinary" implies multiple objectives, issues in multiple objective

modeling, solution, and decision support are the focus of this paper.

In this section, the innate issues in MDO are examined by simple decomposition and

analysis among the components. The harmonious coordination of these issues is the basic

task in MDO. In the next section, the developments and fundamentals of each issue will be

investigated, including the various applications that MDO has addressed.

3. ISSUES IN MULTIDISCIPLINARY DESIGN OPTIMIZATION

Researchers, when addressing the areas from the previous section, must keep the inherent

global issues of MDO in mind. Some researchers in MDO have addressed some of these
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issues by themselves, while others have looked at a combination of a few. However, any

development in MDO must keep all of these issues at the core of the research, as it will add

to the integrity, broaden the acceptance, and establish the value of MDO.

3.1 Decomposition: Friend or Foe?

The decomposition or partitioning of large systems has long been viewed as being

beneficial to the efficient solution of the system. Although breaking a system up into

smaller, less complex subsystems may allow for the effective solution at the subsystem

level, decomposition makes the system design problem more complicated by requiring the

coordination of subsystem solutions into a harmonious system solution. A mirror can be

broken apart, the pieces reassembled, and in no way function as a mirror again. This

problem in analyzing and synthesizing various subsystems poses a difficult problem in

MDO. So why not simply analyze systems at one level, the system level? This creates

analysis problems, as complex system models may become too large to handle. When do

systems become too large for single-level analysis and require decomposition and

multilevel analysis? The answer may lie in the amount and quality of information in a

system model at any point in a design process. Both single-level and multilevel

approaches are being developed as fundamental approaches to a MDO problem. General

decomposition approaches have been developed for generic problems which include

information overlap among various tasks, events, or disciplines by Rogers [71] and Kusiak

[40, 41]. A general decomposition procedure based on the hypergraph representation of

known mathematical analysis models is presented in [55]. More specific decomposition

and coordination approaches for MDO problems are explored below.

Decomposition schemes initially were hierarchical in nature. However, researchers found

that many systems lend themselves to nonhierarchical decompositions instead of

hierarchical ones. The development of nonhierarchical decomposition schemes is

relatively new compared to hierarchical ones. Implementations of decomposing larger,

more complex problems into smaller, temporarily decoupled disciplinary problems have

been studied in [12, 38, 61, 72]. Various decomposition and coordination strategies have

been developed and implemented based on the Global Sensitivity Equation (GSE) [80]

approach to couple the nonhierarchical subsystems [15, 27], [67-69], and [8]. In Balling

[8], an approach to the nonhierarchic decomposition problem is developed whose

coordination procedure focuses on the minimization of the norm of the coupling constraint

and design constraint violation (called a discrepancy function). In Kroo [39], compatibility

constraints are used at the system and subsystem levels to account for the coupling
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between levels. At the system level, a single objective is used (aircraft range in the case

study) and the system constraints ensure that the coupling among the subsystems is

maintained.

The decomposition approaches in this section have been focused in primarily two areas:

• hierarchical modeling where bilevel models are present

• nonhierarchical modeling where some form of cooperation is modeled

mathematically

Realistically, these models are not always applicable. First, because of informational or

geographical barriers, a model that incorporates noncooperative notions may simulate

actual processes better. Second, it is common for certain disciplines to lead or dominate a

design process and for others to follow their lead of decision-making [35]. This type of

process would demand a model that incorporates sequential relationships among decision

makers. The leader/follower formulation is a special case of a bilevel model. In the next

section, strategic interactions are addressed.

3.2 Strategic Decomposition and Interaction

The design of multidisciplinary systems requires a series of decisions which are made by

multiple decision makers, design teams, or organizations. Implementation of Concurrent

Engineering principles have made certain strides to facilitating this integrated decision

making process at a personal interaction level. However, at the analysis and synthesis

levels, a seamless computer infrastructure among the disciplinary software is rare. That is,

cooperation at the analysis and synthesis levels does not occur even though the majority of

the research in this area has assumed cooperation. When cooperation is not present, game

theory principles of noncooperation and multilevel processes can be beneficial to the

modeling of the system and process. For instance, assume that a complex system such as

an aircraft has been decomposed into disciplinary subsystems such as propulsion and

structures. It is readily asserted that a model such as

minimize f(x,p ) = {f l (x,p ) .... f r(X,p )}

xE X(p) c 5rtn

(1)

is the typical starting point for much of the current research and practice in systems

modeling and applied optimization. And yet in specific design instances, this assertion

should be boldly challenged. For example, since the propulsion designer only controls x

and the structures designer controls p, how is p chosen in the propulsion design? Can the

PAGE 7



THEOTHERSIDEOFMULTIDISCIPLINARYDESIGNOPTIMIZATION

propulsion designer assume that the structural designer will always select the vector that is

most advantageous to the propulsion design? If not, how should the propulsion designer

respond to this conflict? Ideally, complete cooperation occurs and each designer is aware

of all the others and the decisions made by each. In well-controlled design problems with

perfect communication, previous approaches to this problem are extremely beneficial.

However, realistically, perfect communication and cooperation does not always occur. In

some cases, a noncooperative formulation models a system and the actual interactions

among design teams more accurately [60]. In many cases, a Stackelberg leader/follower

formulation more accurately models the actual interactions among design teams which act

sequentially. The Stackelberg leader/follower formulation is a special case of a bilevel

model and have been extensively studied in [2-4, 49, 50, 75-77].

Different variations of a two-player strategic game have just been described where one

player controls x and the other player controls p and where p represents all decisions which

are outside the scope of the designer controlling x [1, 24, 93]. The use of game theory to

model multidisciplinary design processes where cooperation may or may not exist among

decision makers in engineering design is of relatively recent origin; its usefulness in many

other decision-making sectors such as economics, politics, and strategic warfare is well-

established. Game theory was explicitly proposed as a design tool originally in [92]. The

notion of game theory in engineering design and optimization has since been limited [5,

23, 35, 45], but there are rich research and implementation opportunities in applying game

theoretic principles to MDO problems.

By using system level analysis many issues involved in decomposition strategies can be

avoided and Pareto solutions can be found, but system analyses may be too complex to

handle computationally. One issue brought on by decomposition strategies is

approximation on many levels, from the approximation at the system level to

approximation to nonlocal information at the subsystem level. In the next section, the use

of approximation in MDO is presented.

3.3 Approximations in MDO

In a perfect world, approximation would not be needed, as the actual analysis routines

across a multidisciplinary system could be used without concern for the computational cost

or time constraints. However, until computers become infinitely fast, approximation is

necessary at some level in a MDO process. This approximation may take many forms.
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Derivative approximations may become obsolete with the emergence of Automatic

Differentiation in FORTRAN (ADIFOR) [13]. In ADIFOR the exact derivatives of a

FORTRAN code are calculated analytically by using the numerical entities at a given

design point, and employing the chain rule to find total local and global derivatives.

ADIFOR, however, cannot be used to compute derivatives of output with respect to a

system of codes. Having the exact derivatives of a single code with acceptable efficiency

is a major step in numerical analysis and approximation, and may pave the way for further

developments.

Another area of research in approximation is design space approximation, locally,

nonlocally and globally. From a global or systems perspective, less detailed analytical

models have effectively been used to approximate the behavior of an aircraft system [18,

19, 51]. Livne and coworkers [47], accomplished comprehensive wing optimization

including structural, aerodynamic, and active control requirements using realistic

approximations along with nonlinear programming techniques. In [18, 25, 90], response

surface methodology is shown to be both effective and efficient in design space

approximation. Response surfaces have been used to effectively represent more detailed

analysis routines that are typically very expensive to use in an optimization setting where

repeated analysis calls are necessary. They have also been used to facilitate robust design,

where good, flat regions are preferred to unstable, optimal points [18, 25, 90]. This again

points to the use of "satisficing" solutions, which are insensitive to changes, as opposed to

optimal solutions, which can be very sensitive and difficult to find. While researchers have

found success using response surfaces to approximate continuous spaces, there are

difficulties when discrete spaces are approximated. Another common approximation

method is Neural Nets (NN) which "learn" about the behavior of the system from training

data. NN's have been shown to produce effective approximations of the design space [11].

For problems that may not change much over long periods of time, neural networks are

beneficial, but for systems that are continuously undergoing improvements and changes,

neural networks are limited. Yet, with any approach, poor fidelity may lead to poor

approximation. A surface fit equation of too low an order, or not enough training data may

easily lead to erroneous and unacceptable results. On the other hand, with higher order fits

and more training data comes more computation time. The customary manner to seek this

balance of accuracy and efficiency is through trial-and-error, but this approach is obviously

not a satisfactory solution.
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The use of low fidelity models is useful in the early stages of design, but it may sacrifice

accuracy in more detailed design stages. High fidelity approximation models have

effectively been used in more detailed design, but are more computationally expensive. So

the question becomes, when does a designer "switch" or evolve from less detailed models

to more realistic or very detailed models? Or when can approximate models be used in

place of full analytical models? The answer to these questions may lie in rigorous domain

independent experimental and theoretical investigations combining information theory,

applied mathematics, system identification, and innate experience of designers.

The issues in approximating local design spaces also hold true for approximating nonlocal

design spaces in hierarchical or nonhierarchical design optimization. Designers of one

subsystem must account for the effects upon other subsystems. Therefore, the ability for a

given subsystem to "see" how it is affecting and being affected by other subsystems is

vital. However, seeing the effects on actual behavior of other subsystems is not realistic.

Typically, subsystems can see effects only on approximate nonlocal behaviors. Various

strategies have been implemented to approximate nonlocal states [8, 45, 67]. Inherent in

these approaches is accommodating the approximate coupling between subsystems via

objective functions, constraints, or additional design variables.

Many times the level of approximation that is needed or effective is based on heuristic

insight or rules. Heuristics play a large role in the design of complex systems from a

human decision-making standpoint to a computer-based AI standpoint. There is a need for

some sort of heuristics to account for the inevitable uncertainty in any given design

process. Heuristics many times take the form of solution algorithm "facelifts" where

certain ad-hoc rules, based on the designer's experience or naturally occurring phenomena

help solution algorithms become more effective or efficient. In the next section the

spectrum of heuristics in MDO is presented.

3.4 Heuristics: Rule--Based Approaches

Heuristics, or rules based on intuition, experience, or natural phenomena have been used in

various stages of a design process to "smooth" over rough spots where insufficient or

unstructured information is present. In Bloebaum [14], heuristic rules are employed to

allocate variables to subsystems, determine the most appropriate move limits, and assign

coordination coefficients during system synthesis. In [37, 65, 66], decision support

heuristics are formulated based on sets of evaluation criteria and rules. These evaluation

criteria are based on uncertain information in the concepts. The best concept is selected
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based on multiple measures of merit. These rules are based on designers' experience with

the design of complex systems and are used when the mathematical information to make

these decisions is not fully defined, or in other words, uncertain. These type of heuristics

are shown originating from the human in Figure 3.

I Decision Rules/Trees )

Level of Appromixation|

Move Limits )

O
O

Oi

I Evolutionary Methods 1
Improved Hit-and-Run
Simulated Annealing

O
O

Figure 3. Heuristics Across the Design Spectrum:

From Human to Computer

Heuristics are also being incorporated in MDO from a computational perspective primarily

to aid in the solution of discrete and mixed models. Multidisciplinary design problems

inherently consist of both discrete and continuous variables, and solving them requires

implementation of computer-based heuristics, as shown in Figure 3. The solution of mixed

problems is identified in [64] as being "one of the most daunting problems in design

optimization." Unlike its continuous counterpart, optimality criteria such as the Karush-

Kuhn-Tucker conditions for discrete problems do not exist. Glover [29] postulates that

integer programming methods and artificial intelligence based methods, both stemming

from a common origin, are now reuniting and creating a new class of algorithms capable of

solving a large class of problems, including mixed problems. These artificial intelligence

methods are based on various heuristic based searches or pattern moves. A brief review of

the most recent advancements with these algorithms follows.

In Renaud [70], the simulated annealing (SA) algorithm is used to solve mixed

discrete/continuous problems. This algorithm involved sequential discretizing of the

continuous domain and then solving the resulting problem using the SA algorithm. In

Zhang [94] a similar approach is taken in developing a SA which modifies the step sizes

and neighborhood move strategy based on 1) discrete or continuous variables and 2)

optimization process stage. In Ford [27], the discrete and continuous variables are

partitioned and the tabu search [30] is used as the discrete solver in the discrete subspace
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optimizations. In Lewis [44], the tabu search is used as the foundation for a mixed

discrete/continuous search algorithm based on empirical models of animals foraging for

food in the wild. Genetic algorithms have shown promise in scheduling and optimization

problems in MDO. In Lin [46], genetic algorithms are used to solve mixed

discrete/continuous problems with good success compared to other approaches. In Hajela

[33], genetic algorithms are shown to be an alternative to solving nonconvex optimization

problems and in Hajela [32], genetic algorithms are used in the multidisciplinary design of

rotor blades. In McCulley [53] genetic algorithms (GA) are used to order the tasks in a

multidisciplinary design process.

Other attempts to solve mixed discrete/continuous problems have had limited success.

Cutting plane algorithms in general require a large number of cuts to produce an integer

solution. Branch and bound techniques in nonconvex problems may fathom nodes which

are not feasible and also require a large number of function evaluations. In Loh and

Papalambros [48], a sequential linearization technique is used to solve well-behaved mixed

problems. In Fu [28], a strict penalty function is used to enforce integer values. The

continuous problem is solved first, then the penalty function is used to further constrain the

integer variables.

These algorithms have been relatively successful for certain problems, but further

investigation and development is needed. A major concern with most algorithms is the

computational expense associated with the solution processes, from discretizing continuous

variables to generating and evaluating new solution points to identifying stopping criteria.

However, these types of algorithms, whether calculus based or heuristic in nature are

presented as being parallel developments that MDO researchers can utilize. Algorithms to

solve mixed discrete/continuous problems are necessary in MDO whether it be at the

subsystem level or at the system level. Systems invariably consist of discrete and

continuous variables and the development of robust algorithms to handle the pitfalls

involved in continuous, discrete, and non-convex optimization are necessary to the

practical evolution of MDO. A fundamental notion in design, many times overlooked, is

the presence of multiple objectives in a design problem. Developing the mathematical

capabilities to handle multiple objectives to study tradeoff scenarios in complex systems

design is necessary to facilitate satisfying the various customer requirements in an effective

manner. In the next section, methods to model and handle multiobjectives in design are

presented.
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3.5 Multiobjective Algorithms

Multiobjective algorithms and approaches have largely been developed outside the

aerospace field, but are now becoming more accepted based on their successful application

in fields such as marine design and structures. Many multiple objective or attribute

approaches have been developed for application in MDO. A general approach, proposed in

Sen [74] calls for the analysis of design concepts based on multiple criteria (attributes or

objectives) without clarifying distinct disciplinary boundaries. Attributes are used to make

a selection from a set of choices, and objectives are used in the synthesis of a concept. In

Sen's approach, both objective and subjective factors can be used in a design process. Sen

uses an analytical hierarchy process [73] to combine the different criteria from different

levels.

In order to analyze a system based on multiobjectives, a solution scheme must be based on

a ranking of these objectives. If precise weightings are known (the preference of one

objective over another is precisely known), a single objective formulation can be

constructed based on relative weights. However, if a designer only knows the preferences

(and not by how much one is preferred over another) a priority ranking scheme must be

used. In Messac [54], "physical programming" is used to capture a designer's preferences

in a mathematically consistent manner in order to avoid needless iterations to determine the

objective weightings. In Hajela [31], a branch and bound algorithm is used to incorporate

integer and discrete design variables in multiobjective problems. In Matsumoto [52], a

fuzzy logic scheme where objectives are ranked as being either "soft" or "hard" is used.

Then, once the system is solved using the "hard" objectives, the "soft" objectives are used.

If no improvement can be gained from the design based on the "hard" objectives, then a

designer may sacrifice some of the "hard" objective in order to improve the "soft"

objective. The authors also present objective categories for which the labels "soft" and

"hard" apply. For instance, those objectives concerned with the protection of the

environment should be "hard" while those concerned with comfort should be "soft". This

approach is very similar to the fuzzy priority scheme implemented in [95].

Another approach to handling multiple objectives is through the use of the compromise

Decision Support Problem (DSP) [56], a generic multiobjective decision model.

Mathematically, the compromise DSP refers to a class of constrained, multiobjective

optimization problems which are used in a wide variety of engineering applications

(Mistree, et al., 1993). Solutions to compromise DSPs yield the values of design variables

which satisfy a set of constraints and achieve as closely as possible a set of conflicting
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goals. The compromise DSP facilitates the paradigm shift necessary to evaluate the

multiobjective tradeoffs and identify robust solutions when designing large scale complex

systems. In Lewis [42], the compromise DSP is used to explore and analyze

multiobjective aircraft design based on the lexicographic minimum concept. This concept

is defined as follows [36].

LEXICOGRAPHIC MINIMUM Given an ordered array f = (fl, f2 ..... fn) of

nonnegative elements fk's, the solution given by f(1) is preferred to f(2) iff

fk (1) < fk (2)

and fi (1) = fi (2) for i = 1..... k-l; that is all higher-order elements are equal. If no

other solution is preferred to f, then f is the lexicographic minimum.

The lexicographic minimum concept is also similar to the approach developed by Stadler

[83] who stresses the history and importance of multiobjective approaches in all types of

design. This concept has been implemented in the mixed discrete/continuous solution

algorithm presented in [44, 56].

With many conflicting goals and nonlinear functions and complex analytical routines,

finding exact solutions to a multiple objective problem is close to impossible. Therefore,

one of two strategies can be used to solve complex optimization problems: 1) solve the

approximate problem exactly, or 2) solve the exact problem approximately. In [56, 57], the

first strategy is implemented through an augmented linearization approximation (Adaptive

Linear Programming). The dominant second order terms in a Taylor series approximation

are used to enhance the linear approximation. Moreover, a convex transformation is used

to handle the nonconvexity of the objective functions. This second-order transformed

approximation seems to be a pre-cursor for modern day quadratic response surface

approximations of complex functions in systems optimization. Approximation techniques,

such as those reviewed in Section 3.3 can be used in both solution strategies depending

upon the assumptions made.

One issue touched on by these approaches to multiobjective design is the uncertainty and

changing of the information in a design process. In Sen [74], a group of concepts may be

analyzed based on multiple attributes, and the final concept will be analyzed based on

multiple objectives. In Matsumoto [52], it is recognized that precise rankings are often
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unavailable, and identifying broad groups of objectives may be the only alternative for a

designer when there is much uncertainty about the design. Further, preemptive ordering of

objectives may precede Archimedean ordering in the earlier stages of design before precise

weighting are known [56]. In any case, the interaction of a designer with the computer-

based tools, as a means to update system models and/or tools as knowledge is gained, is

essential in MDO. In the next section, this issue of human-computer interaction is

addressed.

Tapetta and Renaud [87] address the issue of Multiobjective Collaborative Optimization.

Collaborative Optimization strategies provide design optimization capabilities to discipline

designers within a multidisciplinary design environment. To date these strategies have

been applied to system design problems which have a single objective function. Tapetta

and Renaud in their excellent paper provide an in depth comparison of different MOCO

strategies that they have developed.

3.6 The Human Factor

In Barkan [9], a very important but many times overlooked point is made about design

methodologies. Citing studies from U.S. firms, it stresses that following one set of design

steps or rules could many times lead to suboptimal designs and highly inefficient design

processes. The point Barkan tries to make is for designers in any field to keep their minds

open to many theories, methods, and rules concerning what should be done in design.

Single structured methodologies such as Functional Analysis, Quality Function

Deployment, Robust Design, and Design for Assembly should not be applied blindly

across the design process. Using aspects from various methodologies and philosophies

throughout a design process is how MDO has been evolving recently.

In Hale [34], a design infrastructure is being developed which integrates a decision-based

architecture called DREAMS with a computing infrastructure called IMAGE. This work

addresses both process and product issues in a design process and establishes the human

interface to both the computer-implemented design product and process models. The

Framework for Interdisciplinary Design Optimization (FIDO) [88] program has

recognized this need and is developing a "housing" for MDO, but the contents of the

various "rooms" are up to the specific residents. In Figure 4, the type of framework being

implemented in DREAMS and FIDO is illustrated. The residents in the house of a

complex problem are the various disciplines in a MDO problem. Each discipline has its

own solution software, formulation philosophy, and analysis approach. A framework
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would allow for the combination of various disciplinary methodologies and technologies

under a single roof, all based on the foundation of research in MDO. Yet, how do the

various methodologies of each discipline "see" into the other rooms in the house? This

question is being researched and implemented using different approaches to decision

support. Technological advances in virtual reality, the internet, and the World Wide Web

are facilitating the progression of real-time visualization among designers and design

teams. However, there are still rich research questions concerning information

representation, decision support methods, and strategic disciplinary integration.

DISCIPLII IE 3

I

MDO Research)

SClPLINE 2

DISCIPLINE 2

DISCIPLINE 1

4 DISCIPLINE 3

Figure 4. Framework of MDO Implementation

The focus of a designer as an interactive decision maker throughout a design process leads

to the need of being able to refine and update system models according to progress in a

design process. Certainly, in detailed design, with precise mathematical models, a design

process can be more-or-less automated. However, since MDO starts at concept generation,
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imprecision and uncertainty exists in a design product and process and must be accounted

for. Experimental design techniques have been developed and used to simulate systems

and their innate uncertainty, while robust design techniques have been developed to

minimize the effects of unwanted uncertainty on the behavior of a system. In the next

section, these techniques and their applicability to effective and efficient system design and

simulation are discussed.

3.7 Experimental Design Methods: Balancing Efficiency and Quality

System simulation is performed at all levels of design from "back of the envelope"

calculations in the early stages of design to prototyping in the later stages of design.

Making the simulation as efficient as possible while maintaining an acceptable level of

effectiveness is an important and difficult issue in system and subsystem simulation. In the

following, efficient experimental design methods as well as robust design techniques are

presented, as a way to efficiently sample and simulate a system's behavior.

3.7.1 Experimental design methods

In the design of experiments, a finite number of designs in the design space are simulated

using prescribed settings of the design variables and system evaluation routines. How

small or large a number the term "finite" implies is the dilemma of full factorial

experiments versus fractional factorial experiments. Taguchi utilizes a special class of

fractional factorial matrices, called Orthogonal Arrays (OA) to span the design space

efficiently while maximizing the effectiveness of the information. OAs also can simulate

control factors (design variables) and noise factors (uncontrollable factors, such as

environmental effect) in one OA. In Stanley [85] Taguchi's OAs have been applied to the

design of Single Stage To Orbit (SSTO) vehicles. In Lewis [42], OAs are used to simulate

and explore the multidisciplinary behavior of a Boeing 727-200 effectively. Box [17] has

introduced the Central Composite Design (CCD) experiments as modifications to the OA.

These types of experimental methods combined with response surface methodologies

produce a powerful simulation tool that can be linked to optimization techniques in

complex systems design. This is demonstrated and further explained in [18, 20, 62, 89].

It is pointed out in [79] that many times there are misconceptions concerning the use of

deterministic computer simulations in experimental design. When using a deterministic

computer simulation program to generate data points, the fundamental assumption of the

presence of random error in the experiment is not applicable. Therefore, experimental

design techniques in design must be used with great caution in order to avoid erroneous
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results because of invalid assumptions. One approach taken in [45] is to treat nonlocal

design variables which are unknown as random noise variables. Then, the assumption of

the presence of random error is valid. Also, since some variables in a multidisciplinary

design may be unknown, they can be considered random variables to some designers. This

approach is similar to those pointed out in [79] that are applicable in constructing

approximations of deterministic computer simulation routines.

3.7.2 Robust systems design

In robust design, the effects of noise factors are reduced without eliminating the causes of

the noise. Robust design is an effective approach of designing quality into the design

process and product. Taguchi, an early proponent of robust design, builds his philosophy

on the notion of not finding optimums, but regions of low variability [86]. This notion can

be traced back to Simon [78], who introduced the notion of "satisficing" as opposed to

optimizing. Simon states:

"The decision that is optimal in the simplified model will seldom be optimal in the

real world. The decision maker has a choice between an optimal decision from an

imaginary simplified world, or decision that are 'good enough', that satisfice, for a

world approximating the complex real one more closely." [78]

Another way of putting this is the "betterization" of a design instead of the optimization of

a design [83]. Stadler states that the true optimization of a design is close to impossible. A

more practical approach is making the design better, or the betterization of a design.

The techniques of Taguchi and the notion of "satisficing" have been applied in various

MDO applications. Taguchi's measure of the quality of the design is the signal-to-noise

ratio, a ratio of the mean value to its standard deviation. In [58, 63, 85] the Taguchi

approach to robust design has been incorporated into the design of complex systems such

as a Life Satellite Vehicle and Single Stage to Orbit (SSTO) space vehicle. There are

drawbacks to Taguchi's approach to robust design. These drawbacks are well documented

in [16] and include the single objective (signal-to-noise ratio) nature of the approach.

Applying Taguchi techniques to the early stages of design requires certain modifications,

such as establishing multiple quality loss functions. In addition, standard approaches strive

to move the mean response to a specified target. However, in reality, the target could be

moved to the mean, or both could be moved. Issues such as these are addressed in [21]. In

general, sesearchers are finding excellent results integrating robust design methods into
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MDO (e.g., [18]). However, they must not be applied blindly, but must be intelligently

synthesized with other methods and strategies discussed in this paper. Measuring and

maximizing the quality of a product or process along with efficient experimentation is a

very important aspect of the design of any system, including multidisciplinary systems.

3.8 Applications of MDO

Although the roots of MDO are being attributed to the field of structures in aircraft design,

multidisciplinary design optimization has been performed for years in many other

disciplines. It is only recently that these areas are being recognized as multidisciplinary

design optimization application and research areas. It is the unifying field of MDO which

has brought together developments from a variety of applications.

Much of the focus of MDO applications is in the area of flight systems, both orbital and

non-orbital. NASA, Boeing, Lockheed, and McDonnel-Douglas are each independently

and jointly researching MDO technologies in aircraft design, including the High Speed

Civil Transport (HSCT). In space system design, work concentrated at NASA-Langley

focuses on applying MDO technologies to the design of advanced, manned transportation

system concepts including the new family of space vehicles [61, 84]. Also, MDO

technology has been applied to trajectory optimization problems in ground to mission

vehicles [12]. In civil engineering, applications of MDO include the design of steel and

concrete systems [6, 26]. In mechanical engineering, applications include the design of

damage tolerant structural and mechanical systems, mechanisms [59], and thermal energy

systems [10, 91]. Overlapping in each field is the study of materials which form the

foundation of complex systems. Many times the selection of materials is coupled with the

determination of physical design variables, further increasing the complexity of the system

analysis.

4. CLOSURE

With many individual research directions, a linguistic framework for research and

application is needed. In most pure science fields such as chemistry and biology, there is a

standard framework and lexicon which are used now and forever. In order for MDO to

continue to evolve and establish itself as a distinct field, a framework is needed, including

a common lexicon for researchers and industries. This framework must be applicable to an

entire MDO process from concept generation to detail design. The most promising

attempts at these have come in two forms. In [7, 22, 43], lexicons and classifications of

approaches to MDO problem formulation and solution are presented. These types of
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classification gives the field a form of common communication to base future

developments and research upon. If a common lexicon were established, the various work

in academia, industry, and government could be easily classified and compared. In the

FIDO program, a computer framework for MDO is being generated. This type of

framework has been shown to be an excellent interface for multidisciplinary design issues

among distanced design teams throughout a design process. Uncertain is where the present

research in MDO could fit into computer frameworks of this type. Computer frameworks

may become simply the housing for MDO research, where developments are integrated

into the "guts" of the framework at the system or discipline level. This would allow for

future developments, and would permit a design team to design and analyze a system

without having to know about the inner workings of the algorithms, schemes, and routines.

Also, unclear is how the evolution of the design process from concept design to detailed

component design would be accommodated in a computer framework.

Along these lines, hypotheses for the future areas of research and application are identified:

• establishment and acceptance of a common lexicon or framework for both

research and application in MDO.

• investigation and validation of approaches to solve the multiobjective mixed

integer/continuous problem at the subsystem or system level.

• methods of quantifying the tradeoff between accuracy and efficiency and

predicting trends depending on information and design stage.

• development and application of game theoretic principles to model complex

design product and processes.

• investigation of the notion of satisficing as opposed to optimizing in the

early stages of a design process.

Investigation of these hypotheses in the context of the issues addressed in this report will

help further the evolution of MDO as a field and a science.
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